Shimura Degrees, New Modular Degrees, and Congruence Primes

Alyson Deines

CCR La Jolla

October 2, 2015
Elliptic Curve Parameterization

- We can parameterize modular elliptic curves by modular curves and Shimura curves.
- It’s often difficult to write down the map, but the degree is accessible.
- We can usually find the optimal quotient.
- This information gives us another way to study all of these objects, and even the related modular forms by way of congruence numbers.
Modular Elliptic Curves

- $\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{GL}_2(\mathbb{Z}) : c \equiv 0 \pmod{N} \right\}$
- $X_0(N)$ - the modular curve $\Gamma_0(N) \setminus \mathcal{H} \cup \text{cusps}$
- $J_0(N)$ - Jacobian of $X_0(N)$
- E - a modular elliptic curve over \mathbb{Q} of conductor N, with $E = \mathbb{C}/\Lambda$
- f_E - the modular form in $S_2(N)$ associated to E with Fourier coefficients a_n.
Modular Elliptic Curves

E is modular, so we have the following surjective map:

$$
\pi : X_0(N) \to E
$$

given by $\tau \in X_0(N)(\mathbb{C})$

$$
\pi(\tau) = -2\pi i \int_\tau^{i\infty} f(\tau') d\tau' = \sum_{n=1}^{\infty} \frac{a_n}{n} e^{2\pi in\tau} \in \mathbb{C}/\Lambda.
$$
Modular Degree

Let $\pi : X_0(N) \rightarrow E$ be the modular parameterization. We have such a map for any curve isogenous to E.

Definition
The **modular degree** of E is the minimal such degree.

Definition
The **optimal quotient** is the curve E in the isogeny class which gives the minimal degree. Alternatively, the optimal quotient is the curve E in the isogeny class such that the map $J_0(N) \rightarrow E$ has connected kernel.

Definition
If E is an optimal quotient of $J_0(N)$, $\pi : J_0(N) \rightarrow E$, $\pi^\vee : E \rightarrow J_0(N)$ $\pi \circ \pi^\vee \in \text{End}(E)$ is multiplication by an integer m_E. This integer m_E is called the **modular degree** of E.
Shimura Curves

Let F be a totally real number field. Fix B an indefinite quaternion algebra over F of discriminant D and $\mathcal{O} \subset B$ an Eichler order of level M.

- Define $\Gamma_0^D(M)$ to be the group of norm-1 units in \mathcal{O}.
- Our Shimura curve is $X_0^D(M) = \Gamma_0^D(M) \backslash \mathcal{H}$.
- We denote its Jacobian by $J_0^D(M)$.
Quaternionic Modular Forms

Definition
A *quaternionic modular form* of weight k on $\Gamma^D_0(M)$ is a holomorphic function f on \mathcal{H} such that

$$f(\gamma \tau) = (c \gamma + d)^k f(\tau)$$

for all $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma^D_0(M)$. The space of such forms is denoted by $M^D_k(M)$, and cusp forms by $S^D_k(M)$.
New and Old spaces

Let D, M, and N be positive integers such that $N = DM$ (or ideals in a totally real number field F). Then for $f(\tau) \in S_2(M)$ and $r \mid D$, $f(r\tau) \in S_2(N)$. Thus we have maps $S_2(M) \to S_2(N)$ for each $r \mid D$. Combining these maps gives

$$\phi_M : \bigoplus_{r \mid D} S_2(M) \to S_2(N).$$

Definition

The image of ϕ_M is called the **D-old subspace** $S_2(N)^{D-old}$. The orthogonal complement of $S_2(N)^{D-old}$ in $S_2(N)$ with respect to the Petersson inner product is called the **D-new subspace** $S_2(N)^{D-new}$.
Jacquet-Langlands correspondance

Theorem (Eichler-Shimura-Jacquet-Langlands)

There is an injective map of Hecke modules

\[S_2^D(M) \hookrightarrow S_2(N) \]

where \(N = DM \), *whose image consists of those cusp forms which are new at all primes* \(p \mid D \). *In general there is a non-canonical isomorphism*

\[S_2^D(M) \cong S_2(N)^{D-\text{new}}. \]

Working over \(\mathbb{Q} \), *let* \(J_0^{D-\text{new}}(N) \) *be the* \(D \)-new part of \(J_0(N) \).

Corollary

The Jacobians \(J_0^{D-\text{new}}(N) \) *and* \(J_0^D(M) \) *are isogenous.*
Degree of Parameterization

We have a parameterization for both J-new and Shimura Jacobians.

- E - a modular elliptic curve defined over F of conductor N.
- J - either $J_0^D(M)$ (or $J_0^{D\text{-new}}(N)$).
- $\pi : J \to E$ where E is the optimal quotient.
- The **Shimura degree (or D-new degree)** is the degree of π.

Definition

The endomorphism $\pi \circ \pi^\vee \in \text{End}(E)$ is multiplication by an integer. This integer is called the **Shimura degree (or D-new degree)**, $\delta^D(M)$ (or $\delta^{D\text{-new}}(N)$), of the elliptic curve E.
Idea for studying Shimura Degrees

- Examine character groups of E and J locally, i.e., at primes dividing $N = DM$.

- Use a short exact sequence of Grothendieck to rewrite the degree of parameterization in terms of computable invariants.

- Use dual graphs to view character groups as Hecke modules.

- Use Ribet’s level-lowering sequence to compute Shimura degrees and make comparisons.
Local objects
Let A be a principally polarized abelian variety over F (either J, Shimura jacobian or new-modular jacobian, or E, elliptic curve) and $p \mid N = DM$:

- \mathcal{A}_p - Néron model
- $\Phi_p(A) = \mathcal{A}_p / \mathcal{A}_p^0$ - Component Group
- $\mathcal{T}_p(A)$ - Toric part of \mathcal{A}_p
- $\mathcal{X}_p(A) = \text{Hom}(\mathcal{T}_p(A), \mathbb{G}_m)$ - Character Group

Theorem (Grothendieck)

There is a natural exact sequence

$$0 \to \mathcal{X}_p(A) \xrightarrow{\alpha} \text{Hom}(\mathcal{X}_p(A), \mathbb{Z}) \to \Phi_p(A) \to 0$$

*in which α is obtained from the monodromy pairing $u_{A,p}$ by $(\alpha(x))(y) = u_{A,p}(x, y)$.***
Alternate Description of Shimura Degree

$A \mapsto \mathcal{X}_p(A)$ is functorial, so induces maps:

$$\pi^* : \mathcal{X}_p(E) \to \mathcal{X}_p(J)$$

$$\pi_* : \mathcal{X}_p(J) \to \mathcal{X}_p(E)$$

then $\pi^* \circ \pi_* : \mathcal{X}_p(E) \to \mathcal{X}_p(E)$ is multiplication by $\delta^D(M)$ on $\mathcal{X}_p(E)$.
Diagram Chasing

In particular we have

\[
\begin{array}{cccccc}
0 & \rightarrow & \mathcal{X}_p(J) & \rightarrow & \text{Hom}(\mathcal{X}_p(J), \mathbb{Z}) & \rightarrow & \phi_p(J) & \rightarrow & 0 \\
\downarrow & & \uparrow & & \downarrow & & \downarrow & & \\
0 & \rightarrow & \mathcal{X}_p(E) & \rightarrow & \text{Hom}(\mathcal{X}_p(E), \mathbb{Z}) & \rightarrow & \phi_p(E) & \rightarrow & 0
\end{array}
\]

As \(\mathcal{X}_p(E) \) injects into \(\mathcal{X}_p(J) \), let \(\mathcal{L}_p(E) \) denote the saturation of \(\pi^* \mathcal{X}_p(E) \). Alternatively,

\[
\mathcal{L}_p(E) = \{ x \in \mathcal{X}_p(J) : T_nx = a_n(f_E)x \text{ for all } n \text{ coprime to } N \}
\]

Note: \(\mathcal{L}_p(E) \) depends only on the isogeny class of \(E \) and not on \(E \) itself.
Formula for Shimura Degree

Let g_p be a generator of $\mathcal{L}_p(E)$ and $\pi_* : \Phi_p(J) \rightarrow \Phi_p(E)$. Define the following notation:

$$h_p = u_{J,p}(g_p, g_p), \quad \bar{c}_p = \#\Phi_p(E), \quad i_p = \#\text{image}(\pi_*), \quad j_p = \#\text{coker}(\pi_*) .$$

Theorem ($F = \mathbb{Q}$ due to Takahashi)

The $\#\text{image}(\pi_*)$ divides $u_J(g_p, g_p)$ and

$$\delta^D(M) = \frac{u_{J,p}(g_p, g_p)}{\#\text{image}(\pi_*)} \cdot \#\text{coker}(\pi_*) = \frac{h_p j_p}{i_p} = \frac{h_p \bar{c}_p}{i_p^2} .$$
Hecke Modules - something we can compute

Let H be the definite quaternion algebra of discriminant D with Eichler order $\mathcal{O}(M)$ of level M.

- The **Brandt module** $\text{Br}(D, M) = \mathbb{Z}[\text{Cl}_R(\mathcal{O}(M))]$.
- The **Hecke module** $X(D, M) = \text{Br}(D, M)^0$.
- Computable due to an algorithm of Kirschmir and Voight.
- Inner product:
 \[
 \langle [I], [J] \rangle = \delta_{[I],[J]} \omega_I / 2
 \]
 where $\delta_{[I],[J]} = 1$ if $[I] = [J]$ and 0 otherwise and $\omega_I = \# \mathcal{O}_L(I)^{\times} / \mathbb{Z}_F^{\times}$.
- Hecke operators are matrices with entries:
 \[
 T(p)_{i,j} = \# \left\{ x \in I_i I_j^{-1} : \text{nrm}(xl_i l_j^{-1}) = (p) \right\}.
 \]
Level Lowering Sequence

Theorem (Buzzard over \(\mathbb{Q} \))

When \(N = DMp \), \(\mathcal{X}_p(J_0^D(pM)) = \mathcal{X}(Dp, M) \).

Theorem (Ribet, Buzzard over \(\mathbb{Q} \))

We have the following short exact sequence of Hecke modules

\[
0 \to \mathcal{X}_p(J_0^{Dpq}(M)) \to \mathcal{X}_q(J_0^D(Mpq)) \to \mathcal{X}_q(J_0^D(Mq)) \times \mathcal{X}_q(J_0^D(Mq)) \to 0.
\]
Computing Character Groups of Jacobians Shimura Curves

There are two cases, p divides the level $p \mid pM$ and p divides the discriminant $p \mid pD$ with $p \mid\mid N = DMp$.

- If $p \mid Mp$: Let H be the definite quaternion algebra of discriminant pD with Eichler order $\mathcal{O}(M)$ of level M. Then $\chi_p(J^D_0(M)) \cong X(Dp, M)$.

- If $p \mid Dp$: Let H be the quaternion algebra ramified at all infinite places of discriminant D with Eichler orders $\mathcal{O}(M)$ of level M and $\mathcal{O}(Mp)$ of level Mp. Then

$$0 \to \chi_p(J^{Dp,q}_0(M)) \to X(Dq, Mp) \to X(Dq, M) \times X(Dq, M) \to 0.$$
Let $J' = J_{0}^{Dpq}(M)$ and $J = J_{0}^{D}(Mpq)$. Denote invariants of J' with 's.

Corollary

$h'_p = h_q$ and $i_q | i'_p$.

Corollary

We have the following relationship between Shimura degrees:

$$\delta' = \frac{\delta}{C'_p C'_q} i'^2_i 2'$.$p^2.$

Corollary

*If we instead let $J' = J_{0}^{D-new}(N)$ and $J = J_{0}(N)$, then $h_p = h'_p$ and $i_p | i'_p$. Further, $m_{E}^{D-new} | m_{E}$.***
How to Compute h_p and i_p

The following are now straightforward:

- **h_p:** compute the monodromy paring on the generator for $L(f)$ using the action of Hecke operators on X_p.

- **i_p:** compute the generator of the ideal I_p of \mathbb{Z} by computing the monodromy pairings with h_p.

Oddly enough, in most cases this is enough to compute δ and \bar{c}_p's. Note: If you can compute the optimal quotient, there is an algorithm for finding the Shimura degree.
Data

In fact, for all semistable elliptic curves over \mathbb{Q} with conductor $N < 100$ I can determine both the degree and the optimal quotient:

<table>
<thead>
<tr>
<th>Isog. Class</th>
<th>D</th>
<th>M</th>
<th>m_E</th>
<th>Labels</th>
<th>$\delta^D(M)$</th>
<th>Labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>14a</td>
<td>14</td>
<td>1</td>
<td>1</td>
<td>a1</td>
<td>1</td>
<td>a2</td>
</tr>
<tr>
<td>30a</td>
<td>15</td>
<td>2</td>
<td>2</td>
<td>a1</td>
<td>2</td>
<td>a2</td>
</tr>
<tr>
<td>30a</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>a1</td>
<td>1</td>
<td>a7</td>
</tr>
<tr>
<td>30a</td>
<td>10</td>
<td>3</td>
<td>2</td>
<td>a1</td>
<td>1</td>
<td>a3</td>
</tr>
<tr>
<td>39a</td>
<td>39</td>
<td>1</td>
<td>2</td>
<td>a1</td>
<td>2</td>
<td>a1</td>
</tr>
<tr>
<td>55a</td>
<td>55</td>
<td>1</td>
<td>2</td>
<td>a1</td>
<td>2</td>
<td>a1</td>
</tr>
<tr>
<td>65a</td>
<td>65</td>
<td>1</td>
<td>2</td>
<td>a1</td>
<td>2</td>
<td>a1</td>
</tr>
<tr>
<td>66b</td>
<td>6</td>
<td>11</td>
<td>4</td>
<td>b1</td>
<td>2</td>
<td>b2</td>
</tr>
<tr>
<td>66b</td>
<td>22</td>
<td>3</td>
<td>4</td>
<td>b1</td>
<td>2</td>
<td>b2</td>
</tr>
<tr>
<td>84a</td>
<td>21</td>
<td>4</td>
<td>6</td>
<td>a1</td>
<td>6</td>
<td>a1</td>
</tr>
</tbody>
</table>
Question of Takahashi

Question (Takahashi)

If \(p \mid D \), is the map \(\Phi_p(J) \to \Phi_p(E) \) surjective?

If \(p \mid M \), this is not true.

Corollary (Takahashi)

Assuming the conjecture, for \(p \mid D \),

\[
\delta^D(M) = \frac{u_J(g_p, g_p)}{\#\text{image}(\pi_\ast)} = \frac{h_p}{i_p}.
\]

Note: When working over \(\mathbb{Q} \) this is always enough to compute \(\delta^D(M) \) and find the optimal quotient!
Definition
We say E and E' are discriminant twins if E and E' if $N(E) = N(E')$ and $\Delta(E) = \Delta(E')$, i.e., E and E' have the same conductor and the same discriminant.

Theorem (D. - Lundell)

Over \mathbb{Q} there are only finitely many pairs of semistable, isogenous discriminant twins. They occur for conductors 11, 17, 19, and 37.

Corollary

Assuming Takahashi’s question, over \mathbb{Q} there is an algorithm for finding the Shimura degree and the optimal quotient of $J_0^D(M)$.
Using power series expansions of quaternion modular forms

- Zagier computed the complex periods of the optimal quotient directly using the Fourier series expansion of the modular form.
- Quaternionic modular forms don’t have cusps, so don’t have Fourier series expansions.
- Voight and Willis use power series expansions instead!
- Compute the power series expansion of the quaternionic modular form \(f_E \in S_2(\Gamma_D^0(M)) \).
- Compute generators for the fundamental domain of \(\Gamma^D_0(M) \).
- Use the generators to identify vertices of the fundamental domain.
- Integrate over vertices to find independent periods.
- Compute the \(j \)-invariant and match with curve in the isogeny class. This curve is the optimal quotient.
Example

Let $F = \mathbb{Q}(\sqrt{5})$, $a = \frac{1+\sqrt{5}}{2}$ and $E : y^2 + xy + ay = x^3 + (-a - 1)x^2$, $N = (-5a + 3)$ of norm 31.

- $X_0^N(1)$ is a genus one curve, so the modular degree is trivially 1.
- There are 6 curves in the isogeny class.
- Using the method of Voight and Willis, compute the j-invariant $j(E) = (-a)(-51a + 37)^3(-39a + 25)^3(5a - 3)^{-8}$ and find:

$$E : y^2 + xy + ay = x^3 - (a + 1)x^2 - (30a + 45)x - (111a + 117)$$

- Only one curve in the isogeny class with $\text{ord}_N(\Delta) = 8$, so we find this curve computing Hecke modules as well.
$\mathbb{Q}(\sqrt{5})$ Example

Take $N = -8a + 2$, then $\dim M_{(2,2)}(-8a + 2) = 2$ and $N(-8a + 2) = 76$. Let E be the elliptic curve $76a.a1$. Let $X_{0D}(M)$ be the Shimura curve with $D = 2$ and $M = -4a + 1$.

Case $p \mid D$, so $p = 2$. Computing Brandt Modules: $2 = u_J(g_p, g_p)$, $i_p = 1$ so $\delta = 2\bar{c}_2$. Two choices for \bar{c}_2, 1 and 5, so $\delta = 2$ or 10.

Try $p \mid M$, so $p = -4a + 1$ Use the Hecke module correspondence to get again get $\bar{c}_{-4a+1} = 1$ or 5 and again $\delta = 2$ or 10.

Problem: For both curves in the isogeny class $\bar{c}_2 = \bar{c}_{-4a+1}$.
Modular Degree and Congruence Numbers

Let \(S = S_2(\Gamma_0(N), \mathbb{Z}) \) be the space of weight 2, level \(N \), cuspforms with integral Fourier coefficients. Let \(L = (f_E)^\perp \cap S \).

Definition

The **congruence number** \(r_E \) is the integer that satisfies the following equivalent conditions:

- \(r \) is the largest integer such that there exists \(g \in L \) with \(f \equiv g \pmod{r} \).
- \(\{(f, h) | h \in S\} = r^{-1}(f, f)\mathbb{Z} \).
- \(r \) is the order of the finite group \(S/(\mathbb{Z}f + L) \).

Theorem (Ribet)

\(m_E \mid r_E \).
Modular Degree and Congruence Numbers

Zagier computed m_E for $N = p$. In all of these examples $m_E = r_E$. This lead to Frey and Muller asking if it is always the case that $m_E = r_E$.

Stein, Agashe, investigate and found, no, not even close. Example: The elliptic curve with Cremona label 54b1 has $m_E = 2$ and $r_E = 6$.

Theorem (Agashe,Ribet,Stein-2009)

$m_E \mid r_E$ and if $\text{ord}_p(N) \leq 1$ then $\text{ord}_p(r_E) = \text{ord}_p(m_E)$.

For $\Gamma_1(N)$ they find examples where $m_E \nmid r_E$, in particular 54b1 and also for a curve of squarefree conductor, $N = 38$.

They also note that the analogous statement does not hold for modular abelian varieties, but get a different statement in terms of the exponents of the groups.
$\mathbb{Q}(\sqrt{5})$ Degrees and Congruence Primes

<table>
<thead>
<tr>
<th>Iso.</th>
<th>N</th>
<th>gen</th>
<th>D</th>
<th>M</th>
<th>LMFDB Label</th>
<th>$\delta^D(M)$</th>
<th>r_E</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>$31b$</td>
<td>$5a - 2$</td>
<td>$5a - 2$</td>
<td>1</td>
<td>$a5$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>$36b$</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>$a3$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>$36b$</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>$a4$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>$41b$</td>
<td>$a + 6$</td>
<td>$a + 6$</td>
<td>1</td>
<td>$a2$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>$45a$</td>
<td>$-6a + 3$</td>
<td>3</td>
<td>$-2a + 1$</td>
<td>$a5$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>$45a$</td>
<td>$-6a + 3$</td>
<td>$-2a + 1$</td>
<td>3</td>
<td>$a4$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>$49a$</td>
<td>7</td>
<td>7</td>
<td>1</td>
<td>$a2$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>$55a$</td>
<td>$-a + 8$</td>
<td>$-2a + 1$</td>
<td>$-3a + 2$</td>
<td>$a5$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>$55a$</td>
<td>$-a + 8$</td>
<td>$-3a + 2$</td>
<td>$-2a + 1$</td>
<td>$a5$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>$71b$</td>
<td>$a + 8$</td>
<td>$a + 8$</td>
<td>1</td>
<td>$a4$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>$76a$</td>
<td>$-8a + 2$</td>
<td>2</td>
<td>$-4a + 1$</td>
<td>$a1^*$</td>
<td>2^*</td>
<td>2</td>
</tr>
<tr>
<td>a</td>
<td>$76a$</td>
<td>$-8a + 2$</td>
<td>$-4a + 1$</td>
<td>2</td>
<td>$a2$</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
D-new parts

Let $S = S_2(\Gamma_0(N), \mathbb{Z})^{D-\text{new}}$ and $L = (f) \perp \cap S$.

Definition

The *D*-new congruence number r_D^{new} is the integer that satisfies the following equivalent conditions:

- r is the largest integer such that there exists $g \in L$ with $f \equiv g \pmod{r}$.
- $\{(f, h) | h \in S\} = r^{-1}(f, f)\mathbb{Z}$.
- r is the exponent of the finite group $S/(\mathbb{Z}f + L)$.
<table>
<thead>
<tr>
<th>Isogeny Class</th>
<th>(D)</th>
<th>(M)</th>
<th>Cremona Label</th>
<th>(\delta^D(M))</th>
<th>(m_{E}^{D-new})</th>
<th>(r_{E}^{D-new})</th>
</tr>
</thead>
<tbody>
<tr>
<td>14a (a)</td>
<td>1</td>
<td>14</td>
<td>(a_1)</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>14a (a)</td>
<td>14</td>
<td>1</td>
<td>(a_2)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>15a (a)</td>
<td>1</td>
<td>15</td>
<td>(a_1)</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>15a (a)</td>
<td>15</td>
<td>1</td>
<td>(a_1)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>21a (a)</td>
<td>1</td>
<td>21</td>
<td>(a_1)</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>21a (a)</td>
<td>21</td>
<td>1</td>
<td>(a_2)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>26a (a)</td>
<td>1</td>
<td>26</td>
<td>(a_1)</td>
<td>2</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>26a (a)</td>
<td>26</td>
<td>1</td>
<td>(a_1)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>26b (b)</td>
<td>1</td>
<td>26</td>
<td>(b_1)</td>
<td>2</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>26b (b)</td>
<td>26</td>
<td>1</td>
<td>(b_2)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>30a (a)</td>
<td>1</td>
<td>30</td>
<td>(a_1)</td>
<td>2</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>30a (a)</td>
<td>15</td>
<td>2</td>
<td>(a_2)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>30a (a)</td>
<td>6</td>
<td>5</td>
<td>(a_7)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>30a (a)</td>
<td>10</td>
<td>3</td>
<td>(a_3)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Conjectures

Computing $m_{E}^{D}\text{-new}$ is just a few lines using modular symbols and is very fast compared to computing Brandt modules.

Conjecture

For semistable elliptic curves the following invariants are equal:

$$\delta^{D}(M) = m_{E}^{D\text{-new}} = r_{E}^{D\text{-new}}.$$

If this is true, it gives more evidence of Takahashi’s conjecture:

Conjecture

When $p \mid D$, $\phi_{p}(J) \to \phi_{p}(E)$ is surjective.

And, as $m_{E}^{D\text{-new}} \mid m_{E}$:

Conjecture

$$\delta^{D}(M) \mid m_{E}.$$
Open Questions

- We can use the work of Voight and Willis to find the j-invariant of the optimal quotient of the Shimura curve parameterization up to some precision. Is there an algebraic way to find the optimal quotient? This would give a provable algorithm for computing the Shimura degree.

- For totally real number fields, do we get the same analogues? Does $\delta^D(M) \mid r_E$? When $p \mid D$ is the map on component groups surjective?

- Are there only finitely many semistable, isogenous discriminant twins over totally real number fields? Data indicates yes, but the proof over \mathbb{Q} does not generalize.
Thank you!